Close

La data science est devenue un outil de prévision et d’aide à la décision indispensable aux ingénieurs, aux chercheurs et aux responsables en charge de la gestion des projets et des processus.Toutefois, son application à des systèmes complexes exige de dépasser les méthodes linéaires de modélisation généralement appliquées. En effet, si ces méthodes fonctionnent dans la plupart des environnements, elles présentent d’importants biais dès lors que l’on a affaire à des systèmes complexes (météorologie, physique non linéaire, économétrie, finance, etc.).En s’appuyant sur trois cas concrets représentatifs (environnement physique, marchés financiers, gestion de projet), cet ouvrage illustre comment exploiter les données de systèmes complexes pour construire des modèles maîtrisables, exploitables et performants en termes de prédiction, d’estimation et d’interprétation. Il offre une réflexion globale sur les spécificités des systèmes complexes ainsi que des outils concrets pour mieux les interpréter.

La Data Science pour modéliser les systèmes complexes

QRcode

Optimiser la prédiction, l'estimation et l'interprétation

La data science est devenue un outil de prévision et d’aide à la décision indispensable aux ingénieurs, aux chercheurs et aux responsables en charge de la gestion des projets et des processus.Toutefois, son application à des systèmes complexes exige de dépasser les méthodes linéaires de modélisation

Voir toute la description...

Auteur(s): Chautard, Alain

Editeur: Dunod

Collection: Technique et ingénierie

Année de Publication: 2022

pages: 218

Langue: Français

ISBN: 978-2-10-083087-9

eISBN: 978-2-10-084937-6

La data science est devenue un outil de prévision et d’aide à la décision indispensable aux ingénieurs, aux chercheurs et aux responsables en charge de la gestion des projets et des processus.Toutefois, son application à des systèmes complexes exige de dépasser les méthodes linéaires de modélisation

La data science est devenue un outil de prévision et d’aide à la décision indispensable aux ingénieurs, aux chercheurs et aux responsables en charge de la gestion des projets et des processus.Toutefois, son application à des systèmes complexes exige de dépasser les méthodes linéaires de modélisation généralement appliquées. En effet, si ces méthodes fonctionnent dans la plupart des environnements, elles présentent d’importants biais dès lors que l’on a affaire à des systèmes complexes (météorologie, physique non linéaire, économétrie, finance, etc.).En s’appuyant sur trois cas concrets représentatifs (environnement physique, marchés financiers, gestion de projet), cet ouvrage illustre comment exploiter les données de systèmes complexes pour construire des modèles maîtrisables, exploitables et performants en termes de prédiction, d’estimation et d’interprétation. Il offre une réflexion globale sur les spécificités des systèmes complexes ainsi que des outils concrets pour mieux les interpréter.

Voir toute la description...